Rendement d’une synthèse
Synthèses en chimie organique - Physique-Chimie Spécialité
Exercice 1 : Calculer le rendement d'une réaction de synthèse du paracétamol
Dans tout l'exercice, on utilisera les valeurs exactes pour faire les calculs,
qu'on arrondira au dernier moment.
Le paracétamol est un médicament fréquemment prescrit pour lutter
contre la douleur et la fièvre.
Le paracétamol est obtenu au laboratoire par réaction entre le para-aminophénol
et l'anhydride éthanoïque , selon la réaction d'équation :
La quantité initiale de para-aminophénol, le réactif limitant dans cette expérience,
est .
Données :
Masse molaire du paracétamol :
Quelle est la quantité de matière théorique maximale de paracétamol susceptible d'être obtenue ?
On donnera la réponse avec trois chiffres significatifs, suivi de l'unité qui convient.
La masse de produit sec obtenue est égale à .
Calculer la quantité de matière de paracétamol obtenue.
On donnera la réponse avec trois chiffres significatifs, suivi de l'unité qui convient.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Valider
En déduire le rendement de cette synthèse.
On donnera la réponse avec deux chiffres significatifs.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Suivant
Valider
Exercice 2 : Calculer le rendement d'une réaction de synthèse du paracétamol
Dans tout l'exercice, on utilisera les valeurs exactes pour faire les calculs,
qu'on arrondira au dernier moment.
Le paracétamol est un médicament fréquemment prescrit pour lutter
contre la douleur et la fièvre.
Le paracétamol est obtenu au laboratoire par réaction entre le para-aminophénol
et l'anhydride éthanoïque , selon la réaction d'équation :
La quantité initiale de para-aminophénol, le réactif limitant dans cette expérience,
est .
Données :
Masse molaire du paracétamol :
Quelle est la quantité de matière théorique maximale de paracétamol susceptible d'être obtenue ?
On donnera la réponse avec trois chiffres significatifs, suivi de l'unité qui convient.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Valider
La masse de produit sec obtenue est égale à .
Calculer la quantité de matière de paracétamol obtenue.
On donnera la réponse avec trois chiffres significatifs, suivi de l'unité qui convient.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Valider
En déduire le rendement de cette synthèse.
On donnera la réponse avec deux chiffres significatifs.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Suivant
Valider
Exercice 3 : Calculer le rendement d'une réaction de synthèse du paracétamol
Dans tout l'exercice, on utilisera les valeurs exactes pour faire les calculs,
qu'on arrondira au dernier moment.
Le paracétamol est un médicament fréquemment prescrit pour lutter
contre la douleur et la fièvre.
Le paracétamol est obtenu au laboratoire par réaction entre le para-aminophénol
et l'anhydride éthanoïque , selon la réaction d'équation :
La quantité initiale de para-aminophénol, le réactif limitant dans cette expérience,
est .
Données :
Masse molaire du paracétamol :
Quelle est la quantité de matière théorique maximale de paracétamol susceptible d'être obtenue ?
On donnera la réponse avec trois chiffres significatifs, suivi de l'unité qui convient.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Valider
La masse de produit sec obtenue est égale à .
Calculer la quantité de matière de paracétamol obtenue.
On donnera la réponse avec trois chiffres significatifs, suivi de l'unité qui convient.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Valider
En déduire le rendement de cette synthèse.
On donnera la réponse avec deux chiffres significatifs.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Suivant
Valider
Exercice 4 : Calculer le rendement d'une réaction de synthèse du paracétamol
Dans tout l'exercice, on utilisera les valeurs exactes pour faire les calculs,
qu'on arrondira au dernier moment.
Le paracétamol est un médicament fréquemment prescrit pour lutter
contre la douleur et la fièvre.
Le paracétamol est obtenu au laboratoire par réaction entre le para-aminophénol
et l'anhydride éthanoïque , selon la réaction d'équation :
La quantité initiale de para-aminophénol, le réactif limitant dans cette expérience,
est .
Données :
Masse molaire du paracétamol :
Quelle est la quantité de matière théorique maximale de paracétamol susceptible d'être obtenue ?
On donnera la réponse avec trois chiffres significatifs, suivi de l'unité qui convient.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Valider
La masse de produit sec obtenue est égale à .
Calculer la quantité de matière de paracétamol obtenue.
On donnera la réponse avec trois chiffres significatifs, suivi de l'unité qui convient.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Valider
En déduire le rendement de cette synthèse.
On donnera la réponse avec deux chiffres significatifs.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Suivant
Valider
Exercice 5 : Calculer le rendement d'une réaction de synthèse du paracétamol
Dans tout l'exercice, on utilisera les valeurs exactes pour faire les calculs,
qu'on arrondira au dernier moment.
Le paracétamol est un médicament fréquemment prescrit pour lutter
contre la douleur et la fièvre.
Le paracétamol est obtenu au laboratoire par réaction entre le para-aminophénol
et l'anhydride éthanoïque , selon la réaction d'équation :
La quantité initiale de para-aminophénol, le réactif limitant dans cette expérience,
est .
Données :
Masse molaire du paracétamol :
Quelle est la quantité de matière théorique maximale de paracétamol susceptible d'être obtenue ?
On donnera la réponse avec trois chiffres significatifs, suivi de l'unité qui convient.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Valider
La masse de produit sec obtenue est égale à .
Calculer la quantité de matière de paracétamol obtenue.
On donnera la réponse avec trois chiffres significatifs, suivi de l'unité qui convient.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Valider
En déduire le rendement de cette synthèse.
On donnera la réponse avec deux chiffres significatifs.
$0$ 0 0
$1$ 1 1
$2$ 2 2
$3$ 3 3
$4$ 4 4
$5$ 5 5
$6$ 6 6
$7$ 7 7
$8$ 8 8
$9$ 9 9
$,$ , ,
$=$ = =
$+$ + +
$-$ − -
$\times$ × \times
$\div$ ÷ \div
$\left(\right)$ ( ) \left(\right)
$x_{ }$ x _{}
$x^{ }$ x ^{}
$\sqrt{ }$ √ \sqrt{}
$\dfrac{ }{ }$ \frac{}{}
$\pi$ π \pi
$\int_{ }^{ }$ ∫ \int_{}^{}
$\overrightarrow{XY}$ X Y \overrightarrow{}
$\overline{ }$ \overline{}
$\%$ % %
$\left(\right)!$ ( ) ! \left({}\right)!
$\le$ ≤ \leq
$\ge$ ≥ \geq
$\lt$ < \lt
$\gt$ > \gt
$\approx$ ≈ \approx
$\mathcal{S}$ 𝓢 \cursiveS
$\mathcal{C}$ 𝓒 \cursiveC
$\mathcal{A}$ 𝓐 \cursiveA
$\mathcal{V}$ 𝓥 \cursiveV
$\left(\right)$ ( ) \left(\right)
$\left[\right]$ [ ] \lcrcbrack{}
$\left[\right)$ [ ) \lobrackcparen{}
$\mathbb{N}$ ℕ \N
$\mathbb{Z}$ ℤ \Z
$\mathbb{D}$ 𝔻 \D
$\mathbb{Q}$ ℚ \Q
$\mathbb{R}$ ℝ \R
$\mathbb{R}^{\ast}$ ℝ ∗ \R^{\star}
$\infty$ ∞ \infty
$\varnothing$ ∅ \emptyset
$\cup$ ∪ \cup
$\cap$ ∩ \cap
$\setminus$ ∖ \setminus
$\in$ ∈ \in
$\notin$ ∉ \notin
$\left[\right]$ [ ] \lcrcbrack{}
$\left]\right[$ ] [ \lorobrack{}
$\left]\right]$ ] ] \lorcbrack{}
$\left[\right[$ [ [ \lcrobrack{}
$\left\{\right\}$ { } \lcrcbrace{}
$€$ € €
$$ $ $ \$
$°$ ° °
$Ω$ Ω Ω
$m^{2}$ m 2 m^2
$m^{3}$ m 3 m^3
$/$ / \slash
$km/h$ k m / h km \slash h
$m/s$ m / s m \slash s
$\cdot$ · \cdot
$m·s^{‐1}$ m · s ‐ 1 m \cdot s^{-1}
$x$ x x
$y$ y y
$\alpha$ α \alpha
$\beta$ β \beta
$\gamma$ γ \gamma
$\theta$ θ \theta
$\lambda$ λ \lambda
$\sigma$ σ \sigma
$\mu$ μ \mu
$U_{n}$ U n U_n
$V_{n}$ V n V_n
$u_{n}$ u n u_n
$v_{n}$ v n v_n
$u_{ }$ u u_{}
$v_{ }$ v v_{}
$\mapsto$ ↦ \mapsto
$\longrightarrow$ → \longrightarrow
$\rho$ ρ \rho
$\rightleftharpoons$ ⇌ \rightleftharpoons
$\Delta$ Δ \Delta
Suivant
Valider
Kwyk vous donne accès à plus de 1 000 exercices auto-corrigés en Physique-Chimie . Nos exercices sont
conformes aux programmes de l'Éducation Nationale de la 3e à la Terminale . Kwyk permet aux élèves d'aborder
les notions les plus importantes en Physique-Chimie comme l'étude des ondes et de l'optique, l'organisation
et la transformation de la matière, la conservation et les transferts d'énergie et les lois de l'électricité.
Les élèves peuvent travailler sur l'étude du mouvement avec des exercices de mécanique et de cinétique.
Kwyk propose également de nombreux exercices d'entraînement sur les conversions et la manipulation des
unités, l'écriture scientifique et l'utilisation des chiffres significatifs. Nos exercices sont proposés
sous forme de réponse libre et/ou de QCM. Afin d'assurer un entraînement efficace et pertinent aux élèves,
chaque exercice est généré avec des valeurs aléatoires. Tous les ans, de nouvelles annales du brevet des
collèges et du baccalauréat sont mises en ligne sur www.kwyk.fr. Les élèves peuvent s'entraîner grâce aux
devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais
aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel.
Avec Kwyk , vous mettez toutes les chances de succès du côté des élèves.